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Entropy in Kerr—de Sitter Black Holes
With Spin Fields
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Generalized master equations due to spin fields are given. We obtain the entropy of
electromagnetic, gravitational, Dirac, and scalar fields in a unified form by using the
improved brick-wall method—membrane model. The results show that, as the cutoff is
properly chosen, the entropy in the black hole satisfies the Bekenstein—Hawking area
formula.
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1. INTRODUCTION

Since Bekenstein and Hawking initiated the discussion on the entropy of
a black hole in 1979s, more efforts have been devoted to studying the statistical
origin of the black holes’ entropy. 't Hooft proposed brick-wall method and studied
the statistical mechanics of a free scalar field in the Schwarzschild black hole
background in 1985 ('t Hooft, 1985), and found that the entropy of the scalar field
is proportional to area of the black hole horizon, but the entropy is divergent as
the cutoff is taken to be zero. However, he thought the divergence is caused by the
infinite density of states approaching the horizon. In the middle of 1990s, series of
work has been done in this respect (Denedral., 1995; Ghosh and Mitra, 1994,
1995; Lee and Kim, 1996). Recently, the membrane model was developed basing
on the brick-wall method (Gao and Shen, 2001; Li and Zhao, 2000). The entropy
of various black holes has been calculated through the above methods and many
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important consequences have been achieved (Chandrasekhar, 1983; Gao and Shen,
2002; Liberati and Pollofrone, 1997; Shen, 2000, 2002; Stteh, 1997).

However, the entropy of a black hole which is not spherically symmetric in
electromagneticg= 1) and gravitational{ = 2) fields has not yet been studied. In
this paper, we calculated the entropy of electromagnetic, gravitational, Dirac, and
scalar fields in the Kerr—de Sitter black holes which is not spherically symmetric.
Considering there are two event horizons in the Kerr—de Sitter black hole: black
hole event horizon and cosmos event horizon, we propose to calculate the entropy of
the black holes by using the improved brick-wall method—membrane model rather
than by purely brick-wall method which would make our calculation complex.
The radiation between the two horizons is not in thermal equilibrium because
of their different temperatures. Thus, we regard the horizons as two independent
thermal equilibrium systems and the entropy refer to black hole can be calculated
respectively. The results show that as the cutoff is properly chosen, the entropy in
the black hole satisfies Bekenstein—-Hawking area formula.

2. KERR—de SITTER METRIC

The Kerr—de Sitter space-times can be written in Boyer—Lindquist coordinates
as (Ahmed, 1991)

Ar — Aga®sirt o asirt0[Ay(r? +a? — A/]

— 2 r
ds? = 73 dt® 42 PEAT dt d¢
2 2 2 2\2 2 of
2, p? ., Ag(r?4a?)?— Acalsito |,
—dr? = 1-do? R d¢?, 1)
wherep?, p, Ar, Ay, J? are defined by
p>=p-p*, p=r+ia cos,
Ar=(2+a%)(1- )—2Mr,
1 2
Ay =1+ §Aa cog 9,
1 2
J=1+ 30 (2)

whereM, a, A are the mass, angular momentum per unit mass, and the cosmo-
logical constant. The null vectors of the Newman—Penrose formalism we take

2
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1 iJ
m* = iaJd sing, 0, Ay, 3
VZAH,O |: ’ 'n9i| )
We find the nonvanishing spin-coefficients listed below
ia/Ag sing Ay 5 8 1 d(v/Ag sing)
= U=——=sa=m— B, B= = )
N P 225 sino o
|a«/ 9 SING 1 1 dA;
= iy = ——; = — — . 4
T N P == 2% ar +u (4)

Assuming that the azimuthal and time dependence of our fields will be of the
form €M=Y we find that the directional derivatives are

D =1#3, = Dy, A:nﬂaM—ZZDO,
ALY, VA
5 =mtd, = &St =ma, = Y2 |, (5)
o2 P*N/2
whereDy, D, Lp, L, K, H are defined by
iJK n dA,
Dn=0 +— + ——0",
n= o+ A + A, dr
iJK n dA
Df =9 — —
nT A + A, dr
JH n d(/Ay sing
I—n - 80 + + ( i )!
/Ag SING de
JH n d(+/Ag SinG
L g ( 6 Sl )’
/Ag Sind de
K = am—a)(r + a?),
m .
H=—-—— —asing (6)
sing

ThusK andH have the relation
K —aH sing = —p?w. )

These differential operators satisfy some identities

Ay Dn+1 = DI"IAl'a (8)
ADi, = DA, 9)

(v AgsinB)Lny1 = Lny/ Ag SiNG, (20)
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(VAgsing)L = Lt/ Agsing, (11)
m ima sind ima sing m
(0 ) o0 m32) v ) o1)
P P P p
(12)

3. SPIN FIELDS KERR—-de SITTER SPACE TIME

The Maxwell equations in the Newman—Penrose formalism take on the forms

D1 — 8"po = (m — 20) o + 25¢1 — k2, (13)
D¢z — 8"¢p1 = —Ao + 271 + (D — 2€)¢2, (14)
51— Ao = (1 — 2y) o + 211 — 0 92, (15)
81 — Ao = —veo + 21¢1 + (v — 2B) ¢o. (16)

Using Egs. (4) and (5), then making the transformations

1
po =Dy, ¢Pp1=-—=01

V2o
and
¢ = L @
T
we can separate Egs. (I3)-(16) to be (Khanal, 1983)
(AD1Df — 2iJrw) Ry = ARy, a7)
(ADSFD()—FZI\]I'Q)) R_; = AR_1, (18)
[\/A9L3\/A9L1+2Ja)a COS@] S =15, (19)
[V AsLoyAgL] —2Jwa cosf] S = —1S 4, (20)

herea is the separation constant. Multiplying Eq. (17) Ay, and using the con-
ditions (8) and (9), we can rewrite Eq. (17) as

(ArDoDg — 21Jrw) ArRyy = AA[ Ry (21)

For the Dirac field, the wave equation for a massless dirac particle is (Khanal,
1983)

(D+e—p)F1+(@+m—a)F=0,

A —p—y)Ro+(@+B—-1)FL=0,
(D+e*—p"Gy—(+n*—a*)Gy =0,
(A= —y)G1—(+p —17) Gy =0, (22)
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whereFy, F,, G1, G, are four-component spinots 8, y, €, u, @, p, T, etc. are
Newman—Penrose symbols, aing g* are the complex conjugates®f 8, etc.

All the above equations are also separated by using Newman—Penrose
formalism. The radial equations are given by

APD§ (APDoR ;) = A2R 4, (23)
AIDo (AIDER ;) = 4?R,4, (24)
L] L%S+%) = 22,5, (25)
L (Lgs,%) = 1% 5. (26)

For the gravitational field, we find that the Weyl scalds 11, ¥3, andy4
vanish (leavingy, = —M/(p*)%) along with the spin coefficients, o, A, andv,
showing that the metric is of tyde. Then equations for the perturbed Weyl scalars
can be written as

(6" — 4o + 1) Yo — (D — 26 — 4p) Y1 = 32,
(A =4y +u)vo— (86— 28 —41) Y1 = 30y,
D=p—p"—3+ecNo—(—t+n"—a*—38)k = Yo;
(D —4e — p)a — (8% + 4 + 2) Y3 = —3AY,
(8+4B — 1) Ya— (A +2y +4u) Y3 = —3vyy,
A+p+p +3y —yIr—( +3e+p +r—tHv=—ys (27)

Making the transformations

Yo = o,
1 V2
w = —_q> I 1//. = —
Ve T T
1
Ya = ) Dy, (28)
Equation (27) can be finally separated into (Khanal, 1983)
(ArD1DJ — 6i Jwr — 2Ar2)dg = AR, (29)
(VAsLT ALy + 6adw cost — 2Aa%C0s02)S,, = —ASi2,  (30)
(ArDT Do+ 6i Jor —2Ar%)R 5 = AR », (31)

(VAgL_1y/AgLF —6adw cosd — 2Aa%cosh?)S , = —AS,.  (32)
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We can also see that Eq. (29) can be multiplied\$yto give
(ArD_1D§ — 6iJrw — 2r2A)A?R,2 = AAZR (33)

for scalar field, the separated equations can achieved directly from the Klein—
Gordon equation

1
/=gg o 0 =0. 34
N 8xﬂ ( ) (34)
The radial equation is
a 9 [(r? +a%) w—am]? )
—A—R(r R(r) = 2°R(r). 35
o A5 RO + x () = 2°R() (35)
We can rewrite the above equation wiiii, D/
ADoDg Ry = A*Ry (36)
or
AD{ DoR_ o = 2?R_o. (37)

The radial equations (21), (24), (31), and (36) can be combined into

A

x ASRs = A>A°Rs. (38)
On the other hand, Egs. (18), (23), (31), and (37) can be written as
A
[ D*S(852 7545)D —s(s—3)(1—-29)iowr — CEE 25(s — 1)(6s — 1)}
R.s=1?R., (39)

wheresisthe spin number. Itis clear thatas- 0,s = % s=1,ands = 2,Eq.(35)
correspond to scalar, Dirac, Maxwell, and gravitational field, respectively.

4. ENTROPY

By using the Wentzel-Kramers—Brillouin approximation and substituting
equationsRs = €7() into Eq. (35), the wave numbers are obtained as follows,
K2J2 LS d?A,  3s%(8s? —7s+5)+s> —s /dA e

A2 A, dr? A2 dr A

K =

~Tia r2s(s — 1)(6s — 1). (40)
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Considering whiles = 0, % 1, and 2, the third term of the equation is zero, we

remove it from our equation. Therefore we have

1 1
k- = A—\/\]Z[(r2 +a?)w —am]? + 2Ars<1 — dxr2 — §Aa2>

r

A
x\/—l—lArr2s(s— 1)(6s — 1) — A A2 (41)
The horizon equation can be written as

A= =3 —E)E 1)~ —r ) =0, (42)

wherer ., ro,r_, r__arethe radius of the black hole event horizon, cosmos event
horizon, black hole Cauchy horizon, and the cosmos Cauchy horizon, respectively.
We assume that the fields discussed are in the Hartle—Hawking vacuum state, thus
the angular velocity, the Hawking temperature of the black hole event horizon, and
the cosmos event horizon are defined by

o. — a
a
Q= ———, 43
T :i:_A(r+—r++)(r+—r_)(r+—r__)
By 1273(r% +@a2) '
1 A(gy —r )y —r )y —r——
Ty, = — = (res — 1) ++2 )(2++ ). (44)
Bt 1273(ri, +@7)

In order to be easy to calculate, we &t » — mQ., thus the wave numbers
refer to the black hole event horizon can be written as

1 1
k = < x \/Jz(r2+a2)(E+ mQ, — m9)2+2Ars<1—4Ar2 - §Aa2>
r

x\/—%ArrZS(S— 1)(6s — 1) — A A2, (45)

whereQ = 5%. When we substitut&, for Q. in the above equation, we
can get the wave numbers refer to the cosmos event horizon. It’s clear that the
expression of the wave numbers is very complex. However, we will see that the
second and third terms do not contribute to the calculation of the free energy and

entropy. The free energy at temperatiiteof the boson system is given by
B fr=— Z In(1+e /), (46)
E
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where+ corresponds to fermion field and corresponds to boson field.
According to semiclassical quantum theory, there is

N /OOO dEQE),

whereg(E) = ' 4E) is the states densityy’ is the degeneracy of the fields (for

scalar field and neutrino fieldy = 1 for Maxwell and gravitational fieldy’ = 2).
The states number is

F(E):an(E,I,m)z/dm/dl%/k,(E,l)dr. (47)
m,|

The free energy can be calculated as follows

—Bf, = :I:/OO dEgE) In(1 + e #+F)

B T'(E)
iﬂ*/ e efEL]

ry+2e Amax A 1
_ B / dE/ dr/ dA/ dm— (e’ E + 1)¢
ri+e 0 —X Ay
1
><\/32(r2 +a?) (E+mQ; —mQR)2+ 2A;s (1 —4Ar2 — §AaZ>

<

Considering fermions field and bosons field, the results can be written as

Lr2s(s — 1)(6s — 1) — A A2 (48)

7 73 J3(r2+a2)3
frr= T 2083 A1y — 1 )2ty —1 )2 — )2 —., (fermions field) ~(49)
2 7'[ Js(r + a2)3
+b = /33 A2(r+ _ r++)2(r —r_ )2(r+ — r__)2 2, (bOSOI’IS f|e|d) (50)

wheree is the ultraviolet regulator, which satisfies<O¢ « r,. This manifests
that the integral over the quantum numbedoes not diverge, therefore we need
not to regularize thenintegral. On the other hand, the membrane model illustrates
that the black hole entropy mainly comes from the vicinity of event horizon. Thus
we have taken into account the following equation in the integration with respect
tom,

lim Q=Q,. (51)

r—r,
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We also used the median theorem in the integration with respectiences <
n < 2¢. The extreme of integration in the varialbles due to the fact thdt., has
to be positive. Eq. (39) is also used in the integration with respeact to
We obtain the entropy due to an arbitrary spin field of the Kerr—de Sitter black
hole from the standard formula

aF
2. (52)
ap
As to fermion field, one componential entropy can be written as
73 J3(r? + a?)%w’ e
Si=1 bra) (53)

5 B3 AZ(ry — 1 )2(rs — T )2rs — 1P 12
There are four components of the wave function refer to fermion field. Therefore
the whole black hole entropy is given by

2873 J3(r? + a3’ >

=45 = —— — 54
S S R o o e Y
Similarly, the entropy of bosons field can be obtained as
83 J3(r?2 + a?)%w’ €
Sio = b ra) (55)

583 A1y — 2y — 12 — 1212
We choose the cutoff als 90,8/Jw Heree andyn in Eqgs. (47) and (48) are of

the same order. Therefor% ~ = =908/J&, then the entropy in the Egs. (47)
and (48) satisfies the area Iaw

Sif = g4nr1(ri +a%) =-A,, (56)

A, (57)

Ml 0N

1
Sip = Z4nJ‘1(ri +a%) =

whereA, is the area of black hole event horizon. In the same way, we can easily
obtain the expected entropy of the cosmos event horizon, i.e.,

7 3 7

Sitt = §47TJ Wi +a) = §A++a (58)
1 1.2 o _ 1

Siip = Z47TJ (r+++a)=‘—1A++, (59)

where A, . is the area of cosmos event horizon. Thus the whole entropy of the
Kerr—de Sitter black hole is given by

= Sit + Spyt = g(A+ + Avs), (60)
S = Sub+ Sean = ~(Ar + AL). (61)

4
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5. CONCLUSION

We have studied the entropy due to spin fields in the Kerr—de Sitter black holes
by using the membrane model. And also unified radar equations of four fields are
given. Our results may be significant because they are for black holes that are
not spherically symmetric and especially their entropy of their Maxwell field and
gravitational field is rarely calculated. Since the cutoff was properly chosen, the
Kerr—de Sitter black hole entropy is identified with the Bekenstein—Hawking area
formula. We can see from the results that the electromagnetic, Dirac, gravitational,
and scalar field entropies of the following black holes: Schwarzschild black hole,
Reissner—Nordsbri black hole, Kerr black hole, are embodied as special cases of
the Kerr—de Sitter black hole entropy.
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